1. Instructor:

Dr. Ata Jahangir Moshayedi,

School Of Information Engineering, Jiangxi University Of Science And Technology, No 86, Hongqi Ave,Ganzhou,Jiangxi,341000, China.* ajm@ jxust.edu.cn

2. Period and date:

Start date : End date :

3. Course Description & Aim:

Robotic Engineering is a course for the students who are interested in the design, engineering and programming of robots or another technical career. The Robotics Engineering course is designed to explore the past, current and future use of automation technology in industry and everyday use. Robotics is a lab-based course that uses a hands-on approach to introduce the basic concepts of robotics, focusing on the construction and programming of autonomous mobile robots. Course information will be tied to lab experiments; students will work in groups to build and test increasingly more complex mobile robots, culminating in an end-of-semester robot contest. Students will be divided into groups and complete a variety of robot construction and programming activities within the confines of these groups. Students trace the history, development, and influence of automation and robotics. They learn about mechanical systems, energy transfer, machine automation to solve an existing problem. This course will introduce basic concepts and techniques used within the field of mobile robotics. analyze the fundamental challenges for autonomous intelligent systems and present the state of the art solutions. Among other topics, it will discuss:

- Kinematics
- Sensors
- Vehicle localization
- Map building
- SLÂM
- Path planning
- Exploration of unknown terrain

4. Course syllabus Robotics Course Outline

No	Main topic	Highlight point	Hours
	Introduction	Welcome to Robotics! Pass out notebooks and have the students write responses to the following reflection questions What is a Robot?	
		What are examples of a robot?	
1		What can robots do?	
		What can't robots used in our daily lives?	
		What is possible with a Robot?	
		Should Robots look like humans or should they look like machines? Why does it matter?	
		How can you prove it is a Robot and not a remote controlled machine?	
2	Linear Algebra	Vectors Matrices and Important Matrices Operations Scalar Multiplication & Sum Matrices to Represent Affine Transformations Combining Transformations Positive Definite Matrix Gaussian Elimination Jacobian Matrix	
3	<u>Robot part and</u> <u>sections_1</u>	 What is a sensor? i)Takes readings from physical environment and turns it into an electrical message/signal ii) Sensors we will work with: Touch- hit something and it reacts Light- can sort by color or detect light from dark Sonar/ultrasonic- tells how far away things are Sound- Proximity Sensors Range Sensor Kinect Wolfram in 3D The processor? i)It is the logic circuitry that responds to and processes the basic instructions that drive a computer. 	
4	<u>Robot part and</u> <u>sections_2</u>	What is an actuator and motors? Brief on motors(DC and servo) Brief on motors(DC and servo) Dc motor and encoders resolutions P, I,.D and Pi,PD , and PID controlling loop	
5	Robot Control Paradigms	Classical / Hierarchical Paradigm Classical Paradigm as Horizontal/Functional Decomposition Reactive / Behavior-based Paradigm Characteristics of Reactive Paradigm Behaviors Potential Field Methods Corridor Following with Potential Fields Characteristics of Potential Fields Reactive Paradigm Hybrid Deliberative/Reactive Paradigm	
6	<u>Kinematics</u>	Kinematic equations Forward kinematics Inverse kinematics Robot Jacobian Velocity kinematics	

Proposed Robotic Course

		Static force analysis	
		Locomotion of Wheeled Robots	
		Instantaneous Center of Curvature	
		Differential Drive	
		Non Holonomia Constrainte	
		Non-Holonomic Constraints	
		Drives with Non-HolonomicConstraints	
		Drives with Non-HolonomicConstraints	
		Devel Reckoning and Odometry	
		Introduction and Axioms of Probability Theory	
		Law of Total Probability	
		Bayes Formula	
		Normalization	
		Bayes Rule with Background Knowledge	
		Conditional Independence	
		State Estimation	
		Recursive Bayesian Updating	
		Typical Actions	
		State Transitions	
		Bayes Filters: Framework	
		Markov Assumption	
		Kalman filters	
		Particle filters	
		Hidden Markov mode	
		Dynamic Bayesian ne	
		Partially Observable M	
		Processes (POMDPs)	
		Probabilistic Localization	
		Robot Motion	
		Dynamic Bayesian Network for Controls, States, and Sensations	
		Probabilistic Motion Models	
		Coordinate Systems	
	<u>Probabilistic</u> <u>Motion Models</u>	Typical Motion Models(Odomerty-based Velocity-based (dead reckoning))	
		Reasons for Motion Errors of Wheeled Robots	
9		Odometry Model Noise Model for Odometry	
		Calculating the Probability Density	
		Calculating the Posterior Given x, x', and Odometry	
		Application	
		Rejection Sampling	
		Velocity-Based Model	
		Noise Model for the VelocityBased Model	
		Sensors for Mobile Robots	
		Beam-based Sensor Model	
	Probabilistic	I ypical Measurement Errors of an Range Measurements	
		Proximity Measurement	
		Besulting Mixture Density	
		Influence of Angle to Obstacle	
10	Sonson Models	Scan-based Model	
	Sensor Woulds	Scan Matching and Properties of Scan-based Model	
		Additional Models of Proximity Sensors	
		Landmarks	
		Vision-Based Localization	
		Probabilistic Model	
		Distributions	
		Discrete Bayes Filter Algorithm	
	Bayes Filter -	Piecewise Constant Representation	
11	Discrete Filters	Grid-based Localization	
	10010	Sonars and Occupancy Grid Map	

Proposed Robotic Course

		Tree-based Representation	
		Sample-based Localization (sonar)	
		Mathematical Description	
	Power Filter	Function Approximation	
	Bayes Filter -	Importance Sampling Principle	
12	Particle Filter and	Particle Filters	
	MCL	Resampling Algorithm	
		Mobile Robot Localization	
		Sample-based Localization (sonar)	
		Kalman Filter	
		Gaussians	
		Properties of Gaussians	
		Discrete Kalman Filter	
	Bayes Filter - Kalman Filter	Components of a Kalman Filter	
13		Kalman Filter Undates in 1D	
		Linear Gaussian Systems: Initialization	
		Linear Gaussian Systems: Innumzation	
		Linear Gaussian Systems: Observations	
		Kalman Filter Algorithm	
		Components of a Kalman Filter	
	Bayes Filter -	EKE Linearization: First Order	
14	Extended Kalman	Taylor Expansion	
14		EKE Algorithm	
	Filter	EKE localization	
		Why Menning?	
		Wily Mapping? The Conoral Broblem of Manning	
	~	The General Problem of Mapping	
	Grid Maps and	Grid Mans	
15	Mapping With	Citu Maps	
	Known Poses	Estimating a Map From Data Static State Binary Bayes Filter	
		Inverse Sensor Model for Sonars Range Sensors	
		Resulting Occupancy and Maximum Likelihood Map	
		SLAM: Simultaneous Leastigation and Manning	
		SLAW: Simultaneous Localization and Mapping	
		What is SLAM :	
		SLAM Applications	
	SLAM -	SLAM Applications	
16	Simultaneous Localization and Mapping	Frature Deced SLAM	
10		Peature-Dased SLAM	
		WILY IS SLAW A DAID FIODEIN?	
		Graphical Model of Opline SLAM	
		Graphical Wodel of Offine SLAW	
		ENI SLAW.	
		Schwinzermingues	
	SLAM -	FactSLAM	
17	Landmark-based	1 03151-7111	
	FastSLAM	FastSLAM Complexity	
	SLAM - Grid- based FastSLAM	Grid-based SLAM	
		Rao-Blackwellization	
18		A Graphical Model of Mapping with Rao-Blackwellized PFs	
		Mapping with RaoBlackwellized Particle Filters	
		Particle Filter Example	
		Pose Correction Using Scan	
		Matching and Scan-Matching Example	
		Motion Model for Scan Matching	
		Mapping using Scan Matching	
		FastSLAM with ImprovedOdometry	
		Graphical Model for Mapping with Improved Odometry	
		FastSLAM with Scan-Matching	
		Comparison to Standard FastSLAM	
19		Graph-Based SLAM	

Proposed Robotic Course

	SLAM - Graph- based SLAM	Idea of Graph-Based SLAM	
20	Techniques for 3D Mapping	Why 3D Representations Popular Representations Point Clouds 3D Voxel Grids Elevation Maps Extended Elevation Maps Types of Terrain Maps	
		Multi-level surface map Octree-based Representation	
21	Iterative Closest Point Algorithm	SVD ICP with Unknown Data Association Basic ICP Algorithm Normal-Space Sampling ICP Application Closest Compatible Point Projection	
22	Path and Motion Planning	Motion Planning Classic Two-layered Architecture Dynamic Window Approach Motion Planning Formulation	
23	Multi-Robot Exploration	Exploration Decision-Theoretic Formulation of Exploration Single Robot Exploration Multiple Robot Levels of Coordination The Coordination Algorithm Multi-Robot Exploration and Mapping of Large Environments	
24	Information Driven Exploration	Tasks of Mobile RobotsExploration and SLAMMapping with Rao-Blackwellized Particle Filter (Brief Summary)Factorization UnderlyingRao-Blackwellized MappingExample: Particle Filter for MappingCombining Exploration and SLAMDecision-Theoretic ApproachThe Uncertainty of a PosteriorComputing the Entropy of the Map PosteriorComputing the Entropy of the Trajectory PosteriorDual Representation for Loop DetectionTrajectory graph , Occupancy grid Loops	

5. Course Objectives

In this course, students will:

- 1. Explore the broad scope of robotic applications
- 2. Learn the basic components and building blocks of robots
- 3. Develop the robot construction skills
- 4. Learn to program the robots
- 5. Program autonomous mobile robots to achieve challenging tasks

6. Essential Questions

- 1. How can robotics technology further impact our future in a positive way?
- 2. What are the required components, factors and skills to build a high performance functioning robot?
- 3. How to construct an autonomous mobile robot.
- 4. How to program an autonomous mobile robot.

7. Course Format

- 1. Lectures.
- 2. Video and multimedia presentations.
- 3. Group work and discussions.
- 4. Laboratory investigations.
- 5. Group competitions and activities.
- 6. Mini- and term projects.
- 7. Homework assignments.

8. Assessment Methods (This course is divided into):

1.	Entering the robotics world	a. Introduction to robotics	b. STEM careers
		c. Safety and project	
		management	
2.	Robotics: Mechanics	a. Materials, construction &	b. Motors & gears
		motion	
3	Robotics: Electricity	a. Electricity & batteries	b. Remote controllers
4	Robotics: Sensing & controlling	a. Microcontrollers	b. Sensors
5	Programming: Motion	a. Setup & fundamentals	b. Movements
6	Programming: Sensing &	a. Radio control	b. Sensing
	controlling		
7	Project:	a. Planning	c. Implementation
	Exploring one the existence	b. Design	d. Testing
	platform which we have in RARL		e. Presentation &
			documentation

8 Challenges

10. Course Requirements and Materials Needed

1. LAB

2. Hardware: Designed System, accessories and tools (provided by school).(we have in my lab)

3. Software: ROBOTC license (provided by school_ we have in my lab)).

11. Grading Scale and exam marks

- A = 90-100 %
- B = 80-89 %
- C = 70-79 %
- D = 60-69 %
- F = Below 60 %

NO	ACTIVITIES	PERCENTAGES
1	Mid-term Exam	30%
2	End-of-term Exam	30%
3	Homework	20%
4	Laboratory and Design Project	20%

10. Expectations

- 1. Attend class daily, on time and ready to work.
- 2. Participate and contribute to group assignments and projects.
- 3. Maintain a daily, complete, organized engineering journal.
- 4. Have all assignments done and submitted when they are due.
- 5. Review work done each day.
- 6. Spend an appropriate amount of time preparing for tests.
- 7. Exercise safety and common sense at all times.
- 8. Have a mutual respect for fellow students and their right to an education.

Reference Book:

- 1. Probabilistic Robotics (Intelligent Robotics and Autonomous Agents series) Hardcover August 19, 2005
- 2. Mobile Robots: Inspiration to Implementation, Second Edition 2nd Edition by Sebastian Thrun , Wolfram Burgard ,Dieter Fox Joseph L. Jones , Bruce A. Seiger , Anita M. Flynn
- 3. Vehicles: Experiments in Synthetic Psychology 58042nd Edition by Valentino Braitenberg ,
- 4. Introduction to Autonomous Mobile Robots, by R. Siegwart, I. R. Nourbakhsh, MIT Press, 2011.
- Principles of Robot Motion, by H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki and S. Thrun, The MIT Press, 2005
- 6. Introduction to AI Robotics, by R. R. Murphy, The MIT Press, 2000
- 7. Computational Principles of Mobile Robots, by G. Dudek and M. Jenkin, Cambridge University Press, 2000
- 8. Probabilistic Robotics, by S. Thrun, W. Burgard, and D. Fox, The MIT Press, 2005